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Summary. Proposals of heuristic convertibility functions and general drivers for 
conformational and reaction potential energy (hyper)surfaces study are sug- 
gested. The functions and drivers are formulated under the mathematical model 
of the logical structure of chemistry which has been published in the previous 
paper. A part of the described theory has been realized as the computer program 
system DAISY. 
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1. Introduction 

In the previous paper [1], a mathematical model of the logical structure of 
chemistry has been introduced. The model consists of two main parts. The first 
of them is based on the phenomenon of chemical convertibility, and models the 
logic of chemical changes utilizing potential energy hypersurface, PES. The second 
part of the model is directed to the heuristic prediction of chemical changes. It 
is based on PES path generation and analysis. From the formal point of view, 
there are two essential notions serving as a basis, a heuristic convertibility function 
F'  and a general driver DRV. The function F'  predicts interconversions between 
various nuclear configurations. These interconversions are verified by the general 
driver DRV. Proposals of concrete functions F' and drivers DRV for conforma- 
tional and reaction changes elucidation are subjected in the presented paper. 

2. Heuristic convertibility functions F' 

We will turn our attention to the problem of the formulation of heuristic 
convertibility functions for conformational and reaction changes. Configura- 
tional changes are omitted. Note that group theoretical formalism of Ugi et al. 
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[2] may be used as a good starting point for the formulation of the heuristic 
convertibility functions for configurational problems elucidation. 

2.1. Heur&tic convertibility functions for conformational changes study 

Two functions of this kind are discussed. The former is the general conforma- 
tional convertibility function F%. The latter is the function F~ which may be used 
for the elucidation of conformational changes of open chain molecules. 

Let us suppose that studying conformational changes only one molecule 
composed of atoms of a set A is being of interest. Let card A be N. Any nuclear 
configuration C of the molecule can be described as a set of 3 N -  6 internal 
coordinates which can be split into two subsets. Let it be a set E of M explicitly 
followed and a set I of implicitly followed internal coordinates. Formally: 

C = {Cl, c2 . . . . .  C3N-6} = {il, i 2 , . . . ,  i3N-6-M}U{el, e2 . . . . .  eM} = I w E .  (1) 

Since changes of dihedral angles of the so-called free rotatable bonds (i.e. single 
bonds) usually induce much less energy changes than those of the other internal 
coordinates [3], the set E will usually be a subset of the set of dihedral angles 
expressing a rotation around single bonds. 

Example 1. Cyclohexane (a) and 3-methylene-l,4-pentadiene (b). 

1 

6 4 

3 

a 4 Fig. 1. 

1 

5 3 

b 

Using typical notation a-b-c-d for the description of a dihedral angle we can 
write E = {1-2-3-4, 2-3-4-5, 3-4-5-6, 4-5-6-1, 5-6-1-2, 6-1-2-3} for molecule (a), 
and E = {1-2-3-4, 1-2-5-6} for molecule (b). 

Describing the functions F~, and F~ we will use a parameter D m i  n . Let O m i  n 

denote the smallest value of the difference between the same dihedral angles of 
two nuclear configurations which will be taken into account. 

2.1.1. The function F%. The function F% (P ~<M) is a general convertibility 
function which can be used for an arbitrary conformational change study. It is 
defined in the combinatorial frame and based on the so-called set of "intermedi- 
ate conformations", S, which is derived by the following construction. 
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Let v~, vj be two nuclear configurations of  the molecule under study. Using 
notation of  Ref. [1], we may write vi, vj ~ °V". From Eq. (1), we have: 

vi = {i~, i i " " . . . .  3 N - 6 - M } W { e ~ , . . . ,  e~} ,  (2a) 

vj = { i ~ , . . . ,  i~N-6-M} w { e - ~ , . . . ,  e~}. (2b) 

Let the index set T be defined as: 

T = {t I D(e~, e~) = 1}, (3) 

where the function D(e~, e~) is set to unity if the difference of the dihedral angles 
e~, eJ£ is greater than Omi  n . In all other cases, we set D(e~, e~) equal to zero. Let 
T be ordered in an arbitrary but fixed way. Accordingly, T is the index set 
containing indices of  explicitly followed coordinates in which vi and vj differ by 
the difference greater than D ~ ,  value. Let us take a nuclear configuration vk: 

Vk = {il ~ . . . . .  i kN_6_g}  t~ {e lk , . . . ,  e~}. (4) 

We say that ve is an "intermediate nuclear configuration" of vt, vj if: 

D(e~,e~)=O and D(e{ , e~ )=O f o r i C T ,  (5a) 

there exists at least one i e T such that D(e~, e~) = I, (5b) 

there exists at least one i e T such that D(e{, e~) = 1. (5c) 

Let us denote the set of  all the "intermediate nuclear configurations" as S,j. 
Let us define a function O for each dihedral angle e~ for i e T. The function 

O will inform about the direction of the rotation of the dihedral angle e~ towards 
e~ under the condition that e{ is not met. We define the function O as unity if the 
above rotation is counterclockwise, and as - 1  in the opposite case. Formally: 

1, i f x 2 - m o d 3 ( X l ) = l  , 
O(e~, e k, e{) = 2, if D(e::, e~) = 0 or D(e k, e~) = 0 (6) 

- -  l, otherwise 

The values of  Xl and x2 are 

(a) Let the triple e~, e~, e~ 
0-360 degrees. 

(b) Let the above triple be 

(c) xl = 1, 

Xl = 2, 

Xl = 3, 

obtained by the following construction: 

of  dihedral angles be expressed in the bounds of 

ordered as an increasing series Yl, Y2, Y3- 

if Yl = e~, x2 = 1, if Yl = e~, 

if Y2 = e~, x2 = 2, i f  Y2 - -  e~ ,  

if Y3 ei, x a 3, if Y3 =e~.  

Define the function F~, as follows: 

r % ( v i ,  v j)  = 

0, if T = ~25, 
2, if card T > P or if there exists a subset 

S~ of  the set S 0. c o V" such that 
(a) card S'r = 2 card T, 
(b) O(e~, e~, e~) ~ 2 for each v~ ~ S~ and t E T, 

k e~)) ¢ (O(e~, t e~) for each (c) (O(e~, et ,  et, 
t vk, vt E Sv and t e T. This relation 

is understood as the inequality of  vectors. 
1, otherwise. 

(7) 
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Following the above definition one can say that the nuclear configuration v; is 
convertible to vj in the sense of  the function F~ if vi and vj do not differ in more 
than P dihedral angles and, at the same time, if there exists such a combination 
of rotations of dihedral angles which transfers v; to vj in such a way that no other 
nuclear configuration from the basic set o V" is met. The basic relation between 
two general convertibility functions F~, and Y~ is formulated by the following 
theorem. 

Theorem I. Let F~, and F~,, be defined for the same value of Omi n. If  P '  ~< P then 
F~,, = 1 implies F~, = 1 for each vi, v s e °V". 

Proof. Because of  Eq. (3), the set T is the same for both the F~, and F~ .  The 
same can be said about the set S u which is defined by Eq. (5a-c) .  Let 
F%,(vi, vj.) = 1. It implies, because of Eq. (7), that there does not exist a set S~ 
which fulfills the feature (b) in Eq. (7) and card T ~< P'.  Since P '  ~< P, we have 
T <<, P' <<, P, i.e. T~<P and F~(vi, vj) =1.  

2.1.2. The function F~. The function F~ is a special case of F~, for P = 1. In a 
very similar form, it has been used for conformational changes study of  open 
chain molecules in the program system DAISY [4]. Two conformations vi, vj are 
seen to be interconvertible within the set 0 V" in the sense of  F~ if there exists 
only one k, 1 ~< k ~< M, such that the difference between dihedral angles e~ and e~ 
is greater than Dmi n, and if there exists such a rotation of this free rotatable bond 
which transfer vi to vj and no other nuclear configuration from the set o V" is met 
during this rotation. 

Example 2. Let us consider the nuclear configurations v ~ , . . . ,  v7 of the molecule 

1 

5 3 

6 4 

0 Fig. 2. 

described by E = { 1-2-3-4, 1-2-5-6} as: 

= {o,o},  {o, 18o}, 

v4={120,90}, vs= {120,--90}, 

V 7 = { - - 1 2 0 ,  -90} .  

{180,180}, 

v6 = { -120 ,90} ,  
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For an arbitrary Dmin less than 60 degrees the convertibility predicted by / '~  
(dashed lines) and / '~  (dashed and all lines) is visualized by the following graph. 

© ...... © ...... % 

Fig. 3. 

The above example illustrates that the number of predicted conversions increases 
rapidly by increasing of P in F2. 

2.2. Convertibility functions for reaction PES study 

The problems connected to the formulation of the general convertibility function 
for reaction PES study are closely related to the problems solved in the frame of 
computer-assisted synthesis design. The generation of the starting set o V" is the 
first of them. In general, the set °V" is a subset of Family of Isomeric Ensembles 
of Molecules over a set of atoms A, FIEM(A) [5], or a subset of Family of 
Isomeric Synthons, FIS(A) [6-8]. However, the choice of °V" is dependent on 
the domain of PES which we are interested in. If  only one reaction will be of 
interest to us, then 0 V" may be composed of only two nuclear configurations, 
reactant and product of the reaction. If  the synthesis of a structure is in the 
center of our attention, then ov,  should be composed of the structure and its 
possible precursors. In the first approximation, we use the notion of a conversion 
neighbor, CN, for the definition of reaction convertibility function F R. We say 
that a chemical species with the nuclear configuration vj is a CN of a chemical 
species with the nuclear configuration v; if the minima corresponding to vj and v,. 
along PES are neighbors, i.e. they are separated by a critical point of the PES of 
index 1. Note that this definition is a special case of a more general definition of 
"neighbor" and "strong neighbor" relations introduced by Mezey [9]. The set of 
all CN of ve will be denoted as 5~(v~). Formally, the general reaction convertibil- 
ity function F R is defined as follows: 

0, 
FR(vi ,  Vj) = 1, 

2, 

if Dc(vi, vj) = O, 

if vj e 5e(vi), 
otherwise. 

(8) 

The function D c is a distance function which identifies in a heuristic manner 
whether two nuclear configurations are in the same catchment region of a critical 
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point of  PES. This function will not be further specified here. Note that the 
mechanism introduced below can work without this function. 

In order to incorporate a heuristic concept we have to substitute the exact 
definition of  CN by a heuristic definition. One of the possibilities is the synthetic 
precursor/successor (SPS) introduced in the frame of  the so-called synthon 
model of organic chemistry [6-8,  10]. CN may be understood as SPS without 
virtual atoms. 

However, the starting set °V" may be "non-dense" in the sense that there 
does not exist such a couple v;, v s in 0 V" that those are CN. It is, for example, the 
situation when 0 V" has only two elements, reactant and product of  a many-step 
synthesis. In order to find the convertibility on such a "non-dense" set we have 
to complete this set by new nuclear configurations, and to create a new starting 
set °V". For  this reason, the convertibility network algorithm, CNA, has been 
developed. 

The convertibility network algorithm - algorithm 1 

The algorithm is based on the so-called multilateral generation which is a 
generalization of the bilateral algorithm used in the program RAIN for reaction 
network production [11], and in the algorithm for reaction distance evaluation 
[12, 8]. The general distance function D~(vi, vj), which measures a distance of 
two nuclear configuration vi, vj, is used by the algorithm. In real situations, this 
function is substituted, for example, by chemical distance CD (in the RAIN 
program), by reaction distance RD [13], [7, 8, 12] or by a geometry based 
distance. 

Let us suppose that there exists v ~ 5e(vi) such that Dc(vi, vj) > DG(v, vj) for 
arbitrary v~, v s ~ °V". Let us consider the following denotation: 
° V " = { v l , . . .  ,vl,}, let G'n=(V'n,E'n) and G~t=(VI~,EH) be an auxiliary 
graph with vertex set VH and V)t and edge set E~/and E)¢, respectively. Let 
L F;, Ci, QT, R m be auxiliary sets. Further, let us suppose that if v' ~ 5e(v) then 
v e 5e(v') for any v. 

0. Initialization: V~r,=°V ", Eft,= ~ ,  I,= {1, 2 . . . .  , k}, 

V'I~,= ~ ,  E'~,= ~ ,  r ~ , = I -  {i}, 

R°,=Q°,=(~,  Rm:=m, for i e / a n d  m >0 .  
1. m : = - I  
2. m : = m +  1 
3. Cycle for i .'= 1 . . . . .  k 
4. For  each v e R~ do step 5 
5. If  there exists q ~ Fi and v' ~ 5e(v), v' ¢ Qm such that Dc(v, Vq) > DG(v', Vq) 

then for each q and v' of  that property put: 

R~n + 1 , =  ~l~m + I k..) {Vt},  VH:=VItk_){D'}, E•:=E.w{v,v'}. 
If  there do not exist such q and v' put R m+l . '--~. 

6. Put Qm+l,=QT'wRm+l 
7. End of cycle i. 
8. Cycle for i .'= 1 . . . . .  k - 1 
9. Cycle for j ..= i + 1 . . . . .  k 

10. If  j ¢ C~ then 
if Qm+l c~Q~,+1 ¢ ~ then 
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cj,= {i}, 
E~.'= E~  w {all the edges of which all the paths directing from Vg to vj in Gr/via 

any vertex v from Q~+ 1 n Q7 + 1 are composed}, 

11. End of cycle j.  
12. End of cycle i. 
13. C~,=C~wCj,j a C~, for i ,= l  . . . .  ,k. 
14. F~..=Fi-C~, for i :=l  . . . .  ,k.  
15. If  C~ 4 1  then go back to step 2. 
16. Put °V".'= V~. 
17. The end of the algorithm. 

It is easy to see that, in the sense of Eq. (8), FR(v, v') = I iff {v, v'} is an edge 
of the graph G~, i.e. {v, v'} ~ E~/. We call the graph G~/a convertibility network 
graph, CNG. Note that this graph is heuristic estimation of the convertibility 
graph kG~Es(A) defined in Ref. [1]. Of course, if the set °V" contains only two 
elements then algorithm 1 is bilateral. Although the general multilateral al- 
gorithm may be reformulated as a sequence of bilateral algorithms by the 
following algorithm 2, this reformulated algorithm is not equivalent to the 
original one. 

The algorithm 2 

Let us suppose the same denotation as used in the algorithm 1. 

Let I '  be a set of all ( ~ )  couples which can be constructed from the elements 

of the set I, i.e. I '  = {{i,j} [i ,L ~ I, i C j}. Let G" = (V'~, Eh)  be a graph, C'i be 
auxiliary sets for i 6 L 

V" o V" " O. Initialization: _ .'= _ ,  En..= ~ ,  Ci := {i}, for i ~ I. 
1. d,=min{Do(vi,  vj)} ] {i,j} ~ I'}. 
2. Take an arbitrary couple {i,j} e I' such that Do(vg, vj) = d. 
3. °V",={vi ,  vj}. 
4. Do algorithm 1. 
5. V•,= V ~ w  V'~i, E h ' . = E ~ E ' ~ ,  C ' i , = C ; u G w { l  lv, ~ V'i4}, G,=C~. 

! ¢t t - ,  • 6. I ' , = I ' w { { k ,  l} [v~, ~ Vn,  v, ~ V~t - V , }  - {{j, t} [j, t a C'i}. 
7. If  I '  ¢ ~Z~ then go back to step 1. 
8. The end of the algorithm. 

Comparing the above algorithms one can find out that algorithm 1 is more 
"memory consuming" but it is faster because generally more bilateral steps are 
realized in one multilateral step. In spite of that, some "local parts" of the entire 
convertibility network may be omitted by algorithm 2. It is schematically 
visualized in Fig. 4. 

If  the distances of v~, v2; v2, v3; v~, v3 are similar then all the local parts 
C . . . . .  F of the network may be closed in the same step of algorithm 1. The 
whole network for this case is schematically visualized in Fig. 4a. This situation 
cannot appear using algorithm 2 for which the final network is schematically 
visualized in Fig. 4b. It can be seen the local parts E and F are omitted. 

Intuitively, it seems that the resulting graph of algorithm 2, G", is a subgraph 
of the resulting graph of algorithm 1, G~, but this inclusion is not generally 
satisfied, and can be proved only for special types of the distance D G. Further, 
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Fig. 4. The schematic picture of possible results of algorithms l(a) and 2(b) on the basic set of four 
vertices 

algorithm 2 may be modified to such a sequence of the bilateral algorithms which 
are realized only in between elements of the basic set °V". In this case, the final 
CNG, i.e. G" is a subgraph of G~. 

The computer implementation of CNA based on the above mentioned 
synthon model of organic chemistry is in progress [14]. In this implementation, 
the role of CN is played by the synthon precursor/successor, and a combination 
of chemical and reaction distance is used as the function DG. 

The starting set of nuclear configurations has been completed by use of the 
CNA. Now, further levels of the heuristic convertibility graph GI~ES(A), defined in 
[ 1], may be constructed. The algorithm DAISY [1] will be used by this construc- 
tion. The algorithm requires a driver as an important part. The drivers for 
conformational and reaction changes study are discussed in the next section. 

3. The drivers D R V  

The general driver DRV role in the model has been described in the first part [1]. 
Now, we turn our attention to the formulation of conformational and reaction 
drivers. Note that the configurational driver can be developed in a similar way, 
and the group theory approach to theoretical stereochemistry of Ugi et al. [2] 
can serve as a good inspiration and basis. 

3. I. The conformational driver DRV c 

Two principally different functors DRV ~ can be proposed for the general 
conformational convertibility function F~,. It is driver DRV~ for independent 
driving of each explicitly followed internal coordinate (cf. Eq. (1)) and that 
for simultaneous driving of a subset of n internal coordinates (n ~< P) 
called DRV~n. We will turn our attention to the DRV~ which will be con- 
structed in the following manner. Let us suppose the general form 
DRV(vi, v', vj, P, S, F', O, U, C) used in Ref. [ 1]. Let vi and vj be expressed in the 
same way as in Eqs. (2a) and (2b), respectively. Let S~ be a set of "intermediate" 
nuclear configurations defined in Sect. 2.1.1, in our case for the set C. Now, we 
should separate two different cases: 
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(a) v ' =  vi, i.e. DRV should generate the first step on the path vi ~ vj. 

(b) v' # v~, i.e. v' is an "internal" point of  the path v~ ~ vj. 

(a) Let T b e  the set defined by Eq. (3), n = card T, i.e. the conformations v; and 
vj differ in n dihedral angles. Since each dihedral angle may be driven in + or - 
direction then there exist 2" possibilities of  how to perform driving of only one 
dihedral angle. Formally, one can write that a set W is created by all the 
possibilities. 

W = { ( w 1 ,  . . . , W n )  I w i  = l ,  - -  1 ,  for i = 1 , . . . ,  n}. (9) 

Let us define a subset W' of  W as follows: 

W' = {(wl, • • •, wn) [there exists vk ~ S o. such that 

O(e ,, } ( 1 o) ea ,  e~i) = w i ,  for i = 1 . . . . .  

where the function O is defined by Eq. (6). 
The set W' is an expression of  all the possible rotations of  dihedral angles of  

the nuclear configuration v~ which would be pointed to an "intermediate" nuclear 
configuration between v~ and vj, i.e. to a nuclear configuration from the set S 0. 
Let us define the set W "  as follows: 

W " =  W -  W'. (11) 

Let us define an auxiliary vector X over the set W" in the following manner: 

X = (Xtl . . . .  , x , , ) ,  (12) 
t! such that x,e = 1 ¢¢- wa = 1, for i = 1 . . . .  , n, 

" = - 1, for i = 1, , n, X t i  ~ - -  1 ~ w t i  . . . 

xa = 2, otherwise. 

The driver DRV~ performs a separate rotation of each dihedral angle t i  with 
the step S counterclockwise if xa = I, in the opposite direction if xt~ = - 1, or 
sequentially in both directions if x,i = 2. The ordering of the dihedral angle 
rotation may be different in various computer  implementation. To start rotation 
with such an angle from the set T in which the nuclear configurations differ 
maximally is one of  the possibilities. However, the driver needs a memory  in 
order to eliminate repetition of rotation of  the same dihedral angle in the same 
direction verifying the same conversion v i - *  vj. 

(b) In this case, the situation is simpler because it is known which dihedral angle 
is driven as well as the direction of  the driving. Therefore, DRV starts from the 
value of  this dihedral angle of  the nuclear configuration v', and adds the step S. 

The driver DRV~ is combinatorial.  Thus, it is important,  mainly for 
molecules with more degrees of  conformational freedom, to combine the driver 
with some heuristic. The driver which uses the convertibility function F~ has 
been tested as a part  of  the program system DAISY [4], versions 1.1 and 1.2 for 
conformational analysis of  open chain molecules. In this case, the combinatorial 
explosion is fully eliminated. For  systems with cyclic moieties, it is possible to 
include this driver using the convertibility function F~, where P is the cycle 
largeness. In general, the problem is more complicated because some of  the 
internal coordinates are dependent. One of  the possibilities to overcome this fact 
seems to be utilizing the ring-puckering theory [15]. 
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3.2. The reaction driver DRV R 

The driver DRV R verifies conversions predicted by the function F R which is 
defined by Eq. (8), i.e. DRV R generates reaction paths along PES between two 
CN. The approach is based on the idea that any reaction can be understood as 
a composition of elementary reactions. From the PES point of view, the 
elementary reaction is a process of changing a starting nuclear configuration and 
corresponding electron redistribution to the "transition state" or "unstable 
intermediate", or changing "transition state" or "unstable intermediate" to the 
final state, i.e. product. However, the notion of "unstable intermediate" has to 
be understood relatively because some "unstable intermediate" can appear as 
products which may be isolated by changing conditions. The abstract notion of 
elementary reaction can be seen as mechanisms connected to elementary pro- 
cesses of reorganization of  valence electrons, ESRE [16, 17], i.e., heterolysis and 
homolysis of  a bond, donation and coUigation of radicals and redox processes. 
ESRE have been used in a similar meaning recently [6, 7, 8, 18, 19]. The starting 
point of the work of the driver DRV R is the construction of the so-called 
elementary reaction network which is creacted by the elementary reaction 
network algorithm, ERNA. From the general point of  view, it is similar to 
algorithm 1 for a bilateral case. 

The elementary reactions network algorithm - algorithm 3 

We use the following denotation. Let R be a set of all the elementary reactions 
to be considered, R = { r l , . . . ,  r,}. Let /)1,/)2 be starting structures. Define 
auxiliary graphs G~r = (V~, E~) and G~ = (V~t, E~t). A distance function D R is 
used as a tool to measure the distance between single nuclear configurations. 
This function is dependent on the elementary reactions used. The above men- 
tioned reaction distance RD may serve as an example. 

0. Initialization: V~ .'= ~ ,  E n := ~ ,  V,..= {I)1, /)2}, 

{/)1 }, {/)2}, 
QO:= QO= 

Y'~:=Y'~'.=Q'~:=Q'~:=;~J, for m > 0. 

1. m : = - I  
2. m : = m +  1 
3. Cycle for t := 1, 2 
4. Do 5 for each v c Y7 
5. Do 6 and 7 for each ri c R 
6. v':=v O ri, where the operation (~ denotes a formal application of the 

elementary reaction r~ to the nuclear configuration v. 
7. If  Dg(v, vt) >DR(v',/)t) then Y'r+l :=yt+lu{v ' } ,  VH:=VHu{v'}, E~,.'= 

E~r u {1), /)'}. 
8. Q T + l = Q T u  Y~ +' 
9. If  t = 1 and Q'~+lnQ'~ ~ ;~ then Q:=QT+'c~Q'~ and to to step 12. 

10. If  t = 2  and QT+'nQ'~ +' v~;3 then Q:=QT'+'nQ'~ +' and go to step 12. 
11. The end of the cycle t. 
12. E'I~:=E'Hw {all the edges of  which all the paths going from/),  to v2 in G~ 
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via any vertex v from the set Q are composed}, 

v',,=v',,u{v,v'l {v, 
13. The end of the algorithm. 

The final graph G~ contains all the paths which have to be verified. In other 
words, G~ should contain all the reaction mechanisms of  interest studying the 
change of  the chemical species with the nuclear configuration vl to the chemical 
species with the nuclear configuration v2. 

The construction of  the elementary reaction network utilizing ERNA is the 
first step of  the elaborating of a conversion predicted by the function F R by the 
general driver DRV R. This step has always to be performed when 
DRVR(vi, v', vj, P, S, F' ,  O, U, C) is called and v i = v ' .  The network generated 
and saved in the auxiliary graph G~ is then elaborated by the verification of each 
elementary reaction. Each "internal" vertex of  the network is seen as a "transi- 
tion state" or a "unstable intermediate". The number of  paths between vl and v2 
in the graph G~ is returned by DRV R in the variable P. A part of the elementary 
reaction network for the conversion (CH3)zHCI + O H -  ~ (CH3)zHCOH + I -  is 
visualized in the following scheme: 

H0 I 

• • - +1 H-" +i 
+ OH- 

H ~-.~" ~H + H 7 

.~-~C++ I "+ OH- 

H Fig. 5. 

It is supposed in the above example that the elementary reactions are 
identical to the ESRE used in the synthon model of  organic chemistry [7, 8]. In 
such a case, the final graph G~ of algorithm 3 is a subgraph of the graph of 
Family of  Isomeric Synthons, GFIS(A). Computer implementation of  the ERNA 
algorithm for this type of  elementary reactions is in progress [ 14]. Note that the 
set of elementary reactions can contain "parts"  of processes taking place 
simultaneously, for example, in the SN2 mechanism. The above ideas can be 
combined with the reaction drivers currently used, cf. for instance Ref. [20]. 
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